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ABSTRACT Proton transport (PTR) processes play a major role in bioenergetics and thus it is important to gain a molecular
understanding of these processes. At present the detailed description of PTR in proteins is somewhat unclear and it is important to
examine different models by using well-defined experimental systems. One of the best benchmarks is provided by carbonic
anhydrase III (CA III), because this is one of the few systems where we have a clear molecular knowledge of the rate constant of
the PTR process and its variation upon mutations. Furthermore, this system transfers a proton between several water molecules,
thus making it highly relevant to a careful examination of the ‘‘proton wire’’ concept. Obtaining a correlation between the structure
of this protein and the rate of the PTR process should help to discriminate between alternative models and to give useful clues
about PTR processes in other systems. Obviously, obtaining such a correlation requires a correct representation of the
‘‘chemistry’’ of PTR between different donors and acceptors, as well as the ability to evaluate the free energy barriers of charge
transfer in proteins, and to simulate long-time kinetic processes. The microscopic empirical valence bond (Warshel, A., and R. M.
Weiss. 1980. J. Am. Chem. Soc. 102:6218–6226; and Åqvist, J., and A. Warshel. 1993. Chem. Rev. 93:2523–2544) provides
a powerful way for representing the chemistry and evaluating the free energy barriers, but it cannot be used with the currently
available computer times in direct simulation of PTRwith significant activation barriers. Alternatively, one can reduce the empirical
valence bond (EVB) to the modified Marcus’ relationship and use semimacroscopic electrostatic calculations plus a master
equation to determine the PTR kinetics (Sham, Y., I. Muegge, and A. Warshel. 1999. Proteins. 36:484–500). However, such an
approximation does not provide a rigorousmultisite kinetic treatment. Here we combine the useful ingredients of both approaches
and develop a simplified EVB effective potential that treats explicitly the chain of donors and acceptors while considering implicitly
the rest of the protein/solvent system. This approach can be used in Langevin dynamics simulations of long-time PTR processes.
The validity of our new simplified approach is demonstrated first by comparing its Langevin dynamics results for a PTR along
a chain of water molecules in water to the correspondingmolecular dynamics simulations of the fully microscopic EVBmodel. This
study examines dynamics of both models in cases of low activation barriers and the dependence of the rate on the energetics for
cases with moderate barriers. The study of the dependence on the activation barrier is next extended to the range of higher
barriers, demonstrating a clear correlation between the barrier height and the rate constant. The simplified EVB model is then
examined in studies of the PTR in carbonic anhydrase III, where it reproduces the relevant experimental results without the use of
any parameter that is specifically adjusted to fit the energetics or dynamics of the reaction in the protein. We also validate the
conclusions obtained previously from the EVB-based modified Marcus’ relationship. It is concluded that this approach and
the EVB-basedmodel provide a reliable, effective, and general tool for studies of PTR in proteins. Finally in view of the behavior of
the simulated result, in both water and the CA III, we conclude that the rate of PTR in proteins is determined by the electrostatic
energy of the transferred proton as long as this energy is higher than a few kcal/mol.

INTRODUCTION

Proton translocations (PTRs) play a major role in bio-

chemistry in general and bioenergetics in particular (Ermler

et al., 1994; Gennis, 1989; Mitchel, 1961; Okamura and

Feher, 1992; Wikstrom, 1998). Molecular understanding of

this issue is crucial for the elucidation of the action of

ATPase (Girvin et al., 1998), bacteriorhodopsin (Luecke

et al., 1999; Luecke, 2000; Royant et al., 2000; Sass et al.,

2000), cytochrome c oxidase (Ostermeier et al., 1997;

Yoshikawa et al., 1998), and other important systems.

The considerations of the molecular details of PTR

processes have been quite challenging and controversial.

Many workers followed the influential model of Nagle and

co-workers (Nagle and Morowitz, 1978; Nagle and Mille,

1981) and assumed, at least implicitly, that PTR in biological

systems can be described as a concerted transfer across

a ‘‘proton wire’’ where the key control is provided by

the orientation of the elements that constitute the wire

(Berendsen, 2001; de Groot and Grubmuller, 2001; Kong

and Ma, 2001; Law and Sansom, 2002; Murata et al., 2000;

Nagle and Morowitz, 1978; Nagle and Mille, 1981; Sansom

and Law, 2001; Tajkhorshid et al., 2002; Zeuthen, 2001). It

is important to clarify in this respect that in Nagle’s model

the PTR is controlled by two steps, a HOP step where the

proton is being transferred and a TURN step where the water

file rearranges its orientation. It is thus assumed implicitly

that the overall barrier for the PTR process involves the

effect of these two steps. However, the electrostatic energy

of the transferred proton was not considered and the

emphasis was placed on the orientational effect (see also

below). In view of the reliance on the orientational process inSubmitted March 22, 2004, and accepted for publication July 9, 2004.
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water, we will refer to this view as the ‘‘orientational control

model’’. This idea is consistent with the description of

proton transfer (PT) in water and ice, where all the sites are

equivalent. Recent interest (Schmitt and Voth, 1998;

Vuilleumier and Borgis, 1999) in the identification of the

exact mechanism of H1 diffusion in water (the so-called

Grotthus mechanism; Agmon, 1995; Eigen, 1964; Zundel

and Fritcsh, 1986) has probably strengthened the focus on

the proton wire concept, although the issue of the re-

orientation of the environment has also been considered

consistently.

A different perspective has been put forward by Warshel

and co-workers (Sham et al., 1999; Warshel, 1979, 1986),

where the key factor that controls PT in proteins in general

and PTR in particular has been identified as the electrostatic

free energy of the transferred charge (the water reorganiza-

tion was also taken into account but this was done while

considering the system with the proton present on the donor

or acceptor state). According to this view, (which is based on

microscopic empirical valence bond (EVB) simulations of

PTR in proteins; Warshel, 1979, 1991) the reorganization of

the proton donor and acceptor (in the absence of the proton)

are of secondary importance relative to the change in

solvation free energy along the proton transport path. In-

terestingly, theoretical studies of PTR in bacterial reaction

centers (RC) and cytochrome c oxidase (Kannt et al., 1998;
Lancaster et al., 1996; Okamura and Feher, 1992) have

implicitly recognized the importance of electrostatic effects

by focusing on the pKa values of ionizable groups and/or

internal water molecules (Sham et al., 1999). An interesting,

related point was made recently by Williams (2002).

At this point it might be important to clarify that the

electrostatic control idea referred to the electrostatic energy

of the transferred proton and not to the electrostatic energy of

the water molecules that has been indeed considered by the

proponents of the orientational control model. In other

words, the electrostatic control model emphasizes the change

of the energy of the transferred proton upon moving between

different sites of the channel. It seems to us that calculations

that did not consider the charge of the transferred proton

could not evaluate its electrostatic barrier and thus did not

contain the main element of the electrostatic model. Another

aspect of the electrostatic model has been the prediction that

the barrier for PTR is controlled by the electrostatic energy of

the transferred proton and that the barrier is proportional to

this electrostatic energy. This view is incompatible with the

orientational model that emphasized the orientation of the

water file without the proton. In other words, almost all those

who adopted the orientational model focused, at least

implicitly in their discussions and pictures, on the orientation

of the water file. This was based perhaps on the assumption

that once the water file is oriented correctly the transfer of

the proton is not rate limiting (see discussion in ‘‘Assessing

the approximations used’’). Apparently, the idea that the

electrostatic energy of the transferred proton is a crucial

element in the control of the PTR was considered to be

problematic (Nagle and Mille, 1981). More specifically, it

was assumed that the use of the electrostatic energies of the

proton to estimate the free energy diagrams for PTR is

incorrect, not realizing perhaps the fact that DGz is close to

DG0 (and linearly correlated) in cases of PT with a small

separation between the donor and acceptor (Warshel, 1981;

Åqvist and Warshel, 1993). Instead it was suggested that the

‘‘mobility measured in ice’’ should be used ‘‘to estimate the

rate constants for fundamental conduction processes along

hydrogen-bonded chains in proteins.’’ In this respect one

may argue that the proton wire model formally includes

energy states (Nagle et al., 1980) that resemble the states of

the electrostatic model. However, the connection between

these energies and the electrostatic free energy of the

transferred proton were never made, nor evaluated. In fact,

the states considered seem to correspond to orientational

states rather than charge states (e.g., Fig. 2, a and b) in Nagle
et al., 1980). Thus, we believe that there is a clear and

fundamental difference between the orientational and

electrostatic models.

The contrast between the two views of the control of PTR

in biological systems has been illustrated in our recent study

of the water/proton selectivity in aquaporin (Burykin and

Warshel, 2003) where it was demonstrated that the

selectivity is due to an electrostatic barrier and not to the

orientation of the unprotonated water molecules. Interest-

ingly, several research groups have now concluded that the

electrostatic effect must play a major role (de Groot et al.,

2003; Ilan et al., 2004; Jensen et al., 2003; Yarnell, 2004).

To examine whether the electrostatic control model is valid

for general PTR processes, it is crucial to look for a system

where the time dependence of the PTR is known experimen-

tally (in aqauporin we only know that the PTR is blocked).

Here one of the best benchmarks is provided by carbonic

anhydrase III (CA III), because in this system we know

the rate constant for PTR and its change with mutations

(Silverman et al., 1993). Reproducing the observed trend by

microscopic simulations can provide a very powerful way of

distinguishing between different conceptual models. If, for

example, we find that the PTR in CA III is controlled by the

electrostatic energy of the transferred proton rather than the

water orientation, we are one step forward. In view of this

consideration we will focus here on CA III. We note,

however, that this study addresses the general issue of PTR

in proteins and simply considers CA III as a powerful

benchmark. We believe that an approach that reproduces

the rate in CA III from first principles will provide the correct

tool for analyzing PTR in other systems. Conversely we

believe that methods that cannot reproduce the PTR in CA III

are not capable of modeling PTR in other proteins and

channels (as long as these have a significant barrier). We also

note that the PTR in CA III involves a chain of several water

molecules and other donors and acceptors, thus making it

relevant to other proton-conducting systems. Here it is
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significant that the free energy barrier for PTR in CA III is

;10 kcal/mol, which is much lower than the ;20 kcal/mol

barrier in aquaporin (Burykin andWarshel, 2003) (which has

been considered originally to reflect the water orientation

effects) and quite close to the estimated;6 kcal/mol barrier in

gramicidin A.

To obtain a molecular understanding of PTR in proteins

and to resolve the above controversies, it is essential to be

able to develop simulation methods capable of converting

the available structural information about relevant systems to

the corresponding observed kinetics. The method of choice

for actual simulations is probably the EVB method. This

method was developed in 1980 for studies of chemical

reactions in proteins (Warshel and Weiss, 1980) and has

been used extensively by our group and by others for

simulations of PT in proteins and solution (for a recent

review, see Warshel, 2003). It may be important to note that

recent EVB versions (for a list of versions, see Florian, 2002)

have basically the same ingredients as the original EVB

model. This includes the MS-EVBmodel (Schmitt and Voth,

1998, 1999; Vuilleumier and Borgis, 1997, 1998) used in

recent attempts to study PTR in proteins (Ilan et al., 2004).

More specifically, the original EVB model (Warshel and

Weiss, 1980) and many of its subsequent applications used

multistate models and the main point, adopted in all EVB

studies of reactions in proteins, is the introduction of the

electrostatic potential of the environment in the EVB

Hamiltonian. As clarified in the Methods section, this is not

much different than, for example, an early MS-EVB study of

PTR within six water molecules in water (Vuilleumier and

Borgis, 1997). At any rate, the EVB provides a general

combined quantum mechanical/molecular mechanics (QM/

MM) method that can be applied for basically any process in

condensed phases. Moreover, the EVB can be used and has

been used extensively in quantitative studies of activation

free energies for PT in proteins (e.g., Åqvist and Warshel,

1992, 1993; Warshel, 1991, 2003). The problem, however, is

to evaluate the actual kinetics (and/or proton current) in cases

with high activation barriers and many binding sites for the

proton. In such cases it is practically impossible to use direct

microscopic EVB simulations to reproduce the time-de-

pendent PTR process, because this process can occur on

a millisecond timescale. Thus it is important to develop

related but simpler approaches.

Recently we developed semimacroscopic approaches that

should allow one to simulate general PTR processes in

proteins (Sham et al., 1999). This approach starts with the

EVB formulation, which is then reduced to a simplified

expression (a modified Marcus’ formula) for the activation

free energy for the PTR processes. The free energy changes

needed for this treatment are then evaluated by semimacro-

scopic electrostatic calculations and the resulting calculated

activation free energies and rate constants are used to evaluate

the relevant kinetics by a master equation. However, this

modified Marcus’ approach involves several approximations

that have not yet been verified by careful comparison to the

corresponding microscopic results. Considering the effec-

tiveness of the modifiedMarcus’ approach, it seems to us that

it is crucial to establish its general validity. It is also important

to try to move from the master equation treatment to a more

‘‘molecular’’ time-dependent treatment that will also be

closer to the full EVB treatment, but still allow us to study

long-time PTR processes.

In view of the above considerations we developed in this

work an approach that is halfway between the full EVB

model and the modified Marcus’ treatment. This model

evaluates the effective free energy surfaces in terms of

simplified EVB surfaces and then compares the results of

Langevin dynamics (LD) on these surfaces with those

obtained from explicit all-atom molecular dynamics (MD)

simulations on actual EVB surfaces. The performance of our

model is examined first by simulating PTR along a linear

chain of EVB water molecules in water. It is shown that the

rate of the PTR process depends exponentially on the free

energy of the proton at the highest point of the free energy

profile of a stepwise transfer process. With this finding in

mind we move to the main challenge, which is the simulation

of the PTR in CA III. It is found that the simplified EVB

model reproduced the observed rate constant for PTR in CA

III and in some mutants without adjusting any parameters for

the protein calculation. This seems to establish the validity of

our model and its applicability for general studies of PTR in

proteins.

THE CA III SYSTEM

As stated in the introduction it is important to have a well-

defined benchmark for studies of PTR processes in proteins.

Unfortunately there are very few well-characterized systems

where we know the starting initial and final position of the

transferred proton and the corresponding transfer rate. Even

in gramicidin A, it is not entirely clear what is the rate-

limiting step of the PTR process (Decoursey, 2003). For-

tunately, as will be shown below, CA III provides an

excellent benchmark with clear structural information and

well-studied rate constants for the PTR process (Silverman,

2000).

The catalytic reaction of CA III can be described in terms

of two steps. The first is an attack of a zinc-bound hydroxide

on CO2 (Åqvist and Warshel, 1993; Silverman and

Lindskog, 1988):

CO2 1EZn
12ðOH�Þ1H2O % HCO

�
3 1EZn

12ðH2OÞ:
(1)

The reversal of this reaction is called the ‘‘dehydration

step’’. The second step involves the regeneration of the OH�

by a series of PT steps (Åqvist andWarshel, 1992; Silverman

and Lindskog, 1988).
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EZn
12ðH2OÞ1B%

k�B

kB
EZn

12ðHO�Þ1BH
1
; (2)

where K�B ¼ k�B=kB (in the notation of Silverman et al.,

1993), BH1 can be water, buffer in solution, or the

protonated form of Lys-64 (other CAs have His in position

64). A groundbreaking study of Silverman and co-workers

(Silverman et al., 1993) has determined the kB for the native

enzyme and its mutants. This provided an extremely clear

benchmark for PTR in proteins. Obviously, a model that can

reproduce the rate constant for PTR in this system is likely to

provide a useful tool for general studies of PTR in biological

systems. Conversely, models that cannot accomplish this task

are not likely to describe correctly PTR in proteins. Here one

of the obvious questions is whether the rate constant for PTR

in proteins is determined by the free energy of the transferred

proton or by the orientation of the unprotonated water

molecules (note that the electrostatic free energy of the proton

reflects the reorganization of the protein plus water system).

The subsequent sections will examine our ability to model

the PTR in CA and will also address the general implications

of our findings. It is important to note here that the CA III

system is highly relevant to other systems that ‘‘conduct’’

protons because it includes several well-defined water

molecules that have been considered as a proton wire (e.g.,

Cui and Karplus, 2003; Isaev and Scheiner, 2001; Silverman,

2000). In addition to the benefit of using CA III as a model

for PTR in proteins, it is also useful to understand the nature

of the proton shuttle in CA III to gain a better understanding

of the action of this enzyme.

METHODS

Our initial goal is to provide a general potential surface for PT between all

the relevant sites in a given biological system. Here we believe that currently

the most effective way to describe PT in condensed phases is the EVB

method (Warshel, 1991). Alternative ab initio QM/MMmethods are still too

slow to allow for reliable simulations of general PTR (see discussion in

Warshel, 2003). The EVB method was used in many works and by many

research groups, and its reliability has been demonstrated in studies of PT in

proteins and solution (e.g., Åqvist and Warshel, 1992, 1993; Bala et al.,

2000; Billeter et al., 2001; Feierberg and Åqvist, 2002; Hwang et al., 1988;

Kim et al., 2000; Kong and Warshel 1995; Schmitt and Voth, 1998;

Vuilleumier and Borgis, 1998a,b; Warshel and Weiss, 1980; Warshel, 1991,

2003). Thus we will not give here a description of the EVB method and refer

the reader to the available literature and book (Warshel, 1991). We also

would like to point out that the EVB program is implemented in the

MOLARIS program (Chu et al., 2004). However, we will describe here the

EVB for the case of n protonation sites (which are considered formally as

bases) and one excess proton. In this case we describe the EVB quantum

system in terms of diabatic states

Ci ¼ B1B2 . . .BiH
1
. . .Bn

Cj ¼ B1B2 . . .BjH
1
. . .Bn; (3)

where BiH
1 is the protonated form of the Bi protonation site (e.g., an H3O

1).

Now, the i-th diagonal element of the Hamiltonian of this system is

described by a force-field-like function that describes the bonding within

donors, the bond of the proton to the i-th base, as well as the nonbonded

interactions in the system and its interactions with the surroundings (protein

or water). More specifically, the diagonal elements are described by

where the b(i) values and u(i) values are, respectively, the bond lengths and

bond angles in the quantum mechanical system composed of the n bases and

the excess protons. The rk,k# runs over all the nonbonded distances in the

quantum system, and the q values are residual charges of the indicated atom

in the given resonance state. The screening of the charge-charge interaction

is introduced only for short distances (bonding distances) where the correct

quantum mechanical description does not follow the classical prescription.

The r�4 term represents an approximation for the inductive interaction

between the solute charges. U
ðiÞ
Ss describes the interaction between the

quantum system (the ‘‘solute’’) in its i-th state and the surrounding classical

system (the ‘‘solvent’’) that includes water molecules and/or protein atoms.

Uss is the solvent-solvent classical potential surface. Finally, D
ðiÞ is the so-

called ‘‘gas phase shift’’ that determines the relative energy of the diabatic

states (Warshel, 1991). The off-diagonal elements (theHijs) are described by

empirical functions that are fitted to experimental information and ab initio

calculation, and the ground-state energy, Eg, is obtained by diagonalizing the

EVB Hamiltonian.

HCg ¼ EgCg: (5)

More detail on the nature of the EVB matrix elements for different

systems is given elsewhere (e.g., Åqvist andWarshel, 1993; Warshel, 1991).

In this work we represent the cases where the bases are water molecules with

a slightly modified version of the parameters used in reference (Štrajbl et al.,

2002). In other cases (i.e., His, Lys, Asp, and Glu as proton acceptors) we

adjusted previously used EVB parameters.

The EVB Hamiltonian represents the basis functions of Eq. 3, where the

proton can be located on any of the sites of the ‘‘active space’’ (the part of

the system that is described quantummechanically). The rest of the system is

described classically. At this point, it might be useful to clarify that the EVB

and the so-called MS-EVB (Schmitt and Voth, 1998; Vuilleumier and

Borgis, 1998a,b) that were so effective in studies of proton transport in

water, are more or less identical. More specifically, the so-called MS-EVB

includes typically six EVB states in the solute quantum mechanical (QM)

region and the location of this QM region changes if the proton moves. The

QM region is surrounded by classical water molecules (the molecular

mechanics (MM)) whose effect is sometimes included inconsistently by

solvating the charges of the gas phase QM region (this leads to inconsistent

QM/MM coupling with the solute charges as explained in, e.g., Shurki and

Hii ¼ ei ¼ +
m

D½1� expf�bðbðiÞm � b
ðiÞ
0;mÞg�1 +

m

ðKu=2ÞðuðiÞm � u
ðiÞ
0;mÞ

2
1 +

k;k#

ðAr�12

k;k# � B r
�6

k;k#Þ

1 +
k;k#

332 q
ðiÞ
k q

ðiÞ
k# ð1� exp

�msr
2
k;k#Þ=rk; k# � +

k;k#

166a=r
4

k;k# 1D
ðiÞ
1U

ðiÞ
Ss 1Uss

¼ e
0

i 1D
ðiÞ
1U

ðiÞ
Ss 1Uss; (4)
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Warshel, 2003; Villa and Warshel, 2001). More recently the coupling was

introduced consistently by adding the interaction with the MM water in the

diagonal solute Hamiltonian. Now our EVB studies were performed

repeatedly with multistate treatment (e.g., five states in Warshel and Russell,

1986) and this has always been done with a consistent coupling to the MM

region. Thus the only difference that we can find between our EVB and the

recent MS-EVB version is that our EVB studies did not update the location

of the QM region during the simulations, because they dealt with processes

in proteins, where the barrier is high, rather than with low barrier transport

processes (so that the identity of the reacting region has not changed during

the simulations. Also note that the MS-EVB simulations in proteins, which

involve a limited number of quantum sites, do not change the QM region

(e.g., Cuma et al., 2001) during the simulations. Finally, in cases of high

barriers the change of the QM region is not useful, because the main issue is

the ability to obtain a proper evaluation of the free energy associated with

climbing the barrier. Thus we conclude that the EVB and MS-EVB are

identical methods, although we appreciate the elegant treatment of changing

the position of the QM region during simulations, which is a very useful

advance in EVB treatments of processes with a low-activation barrier.

At this point, we would like to clarify that we view the full EVB treatment

as a reliable, fully documented, and established method for simulating PTR

in condensed phases. The MOLARIS program (Chu et al., 2004; Lee et al.,

1993) can perform EVB calculations on any biological system. Thus the

validity of the EVB is not the issue of this work. What we need here,

however, is a simplified EVB-based model that will reproduce the results of

the full EVB model (which treats the protein and solvent explicitly) in

a much shorter simulation time, and allows for simulations of PTR processes

in the microsecond range. The simplified model can be based on an effective

potential that treats explicitly only the molecules that are involved directly

in the PTR (the active space). In doing so, our first priority is to force the

free energy functionals associated with each simplified EVB state (the

microscopic Marcus’ parabolas), at the given environment, to have the same

minimum and similar curvature as the corresponding functionals of the full

EVB model. In other words, using the full EVB treatment we describe the

adiabatic ground-state free energy, Dg, for a PT between two sites by

considering the free energy functionals (Dg1 and Dg2) associated with the

diabatic energies (the e1 and e2) and mixing them by the

off-diagonal element H12. The results of such a treatment are described

in Fig. 1 (the figure also defines the reorganization energy, l12, which

will also be discussed below). Now when we construct the simplified

EVB model we try to force its free energy functionals to overlap those

obtained by the full model. This can be done quite effectively by

representing the simplified EVB surface by the same type of solute surface

as in Eq. 4, while omitting the solute-solvent and solvent-solvent terms (the

USs and Uss terms) and modifying the D(i) values to reflect the missing effect

of the solvent. With this in mind we use here an effective Hamiltonian, H̄; of

the form

e�i ¼ e
0

i 1
�DD
ðiÞ

H̄ij ¼ Hij: (6)

The free energy, �ggg; associated with the ground-state potential (�EEg) of the

simplified Hamiltonian, H̄; (here the free energy accounts for the average

over the coordinates of the active space) is treated as the effective free

energy surface that includes implicitly the rest of the system. In other

words, we use

gðrÞeff ¼ �gggðrÞ; (7)

where r are the coordinates of the active space. Now the treatment of Eq. 6

provides a simple and powerful way of representing the energetics of the

environment implicitly by adjusting the D(i) values to the corresponding �DD(i)

values while imposing the requirement

ðDGi/jÞeff ¼ ðDGi/jÞcomplete (8a)

ðDgzi/jÞeff ¼ ðDgzi/jÞcomplete; (8b)

where ( )eff represents the quantity obtained with the effective EVB potential

and ( )complete designates the results obtained when the EVB treatment

considers the entire system explicitly. For convenience we usually determine

ðDGi/jÞcomplete (and the corresponding D
(i) values of the effective model) by

the semimacroscopic electrostatic calculations described below. At this point

we would like to clarify that what is done to satisfy Eq. 8a is not some ad hoc

treatment, but a well-defined procedure that exploits the fact that the EVB

free energy functionals, g, change linearly with the gas phase shift (the D(i)).

To satisfy Eq. 8b we need to have a similar curvature to the EVB functional

of the simplified and the full model. Here we have two options. The first is to

modify the solute potential (usually it is enough to change the D in the e0 of

Eq. 4) in the simplified model, and thus to change the solute reorganization

energy to account for the effect of the reorganization energy of the missing

solvent. The second option is to add effective solvent coordinates to the

simplified model (both options will be used here).

It is useful to note that in moving to the simplified models we try to keep

the parameters in e0i similar to those in the full model. However, because

the solvent contribution is not included explicitly in e�i; we do not have the

electrostatic screening effect of the solvent and we have to reduce the

residual solute charges (see below). The effect of the solvent on the free

energy functionals is, of course, still included by adjusting the D(i) values

and the parameters that determine the reorganizational energy.

Finally, to obtain a stable result we have to consider one more step. That

is, the calculation of ðDGi/jÞcomplete by the EVB/umbrella sampling (EVB/

US) approach (Warshel, 1991) or by the related free energy perturbation

approaches can be quite challenging due to convergence problems. Instead,

we chose to use the semimacroscopic PDLD/S-LRA method (Lee et al.,

FIGURE 1 A description of the relationship between the diabatic free

energy functions (g1 and g2), the adiabatic ground state free energy (g), the

reorganization energy (l), and the mixing term (H12). The specific results are

taken from EVB simulations of a PT step in CA III.
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1993; Schutz and Warshel, 2001) used effectively in our previous studies of

PTR and ion transport (Burykin and Warshel, 2003; Sham et al., 1999). This

approach describes the total free energy of each proton configuration as

DG
ðmÞ ¼ +

k

ð2:3RTÞqðmÞ
k ðpKðmÞ

a;k � pHÞ; (9)

where q
ðmÞ
k is the charge of the k-th group in the m-th configuration. The

relevant pKa values in the different sites of the protein are determined

semimacroscopically by evaluating the change in solvation energy of

moving the charged group from water to the given site (for a review of this

approach, see Schutz and Warshel, 2001). Now the free energy of a proton

transfer between site i and site j is given by Warshel (1981):

DG
ðmÞ
i/j ¼ 2:3RT ðpKðmÞ

a;i � pK
ðmÞ
a;j Þ1DV

i;j
QQ=eijðRÞ; (10)

where DV i;j
QQ=eijðRÞ is the change in the effective charge-charge interaction

between the donor and acceptor upon PT and e(R) is the effective dielectric

constant for this interaction (at a charge separation R).
With the effective potential defined by Eqs. 6 and 7 above it is possible to

examine the time dependence of PTR processes by Langevin dynamics (LD)

simulations. That is, the time dependence of the system is determined by

a Langevin equation (McQuarrie, 1976):

m
�
i rr̈ria ¼ �m

�
i gi _rria � dDgeff=dria 1AiaðtÞ; (11)

where Dgeff is the effective potential of Eq. 7, i runs over the ions, a runs

over the x, y, and z Cartesian coordinates of each ion, m�
i is the mass of the

i-th ion, gi is the friction coefficient for the i-th ion, and Aia is a random

force, which is related to gi through the fluctuation-dissipation theorem

(Kubo and Toyozawa, 1955).

The above LD treatment represents the effect of the solvent by modifying

the solute reorganization energy and by the friction coefficient of Eq. 11. A

more physically consistent treatment should include also an explicit

effective solvent coordinate. The prescription for doing so is well known

in the electron transfer community (e.g., Dakhnovskii and Ovchinnikov,

1986; Warshel and Parson, 2001), where the solvent coordinate, Q, is

considered as the corresponding reaction field, or more microscopically by

the electrostatic component of the energy gap (Hwang et al., 1988; Warshel,

1982). This type of solvent coordinate has been introduced to general studies

of charge transfer reactions in the framework of a two-state EVB formulation

(Hwang et al., 1988). For the benefit of the reader, we outline some elements

of this treatment, but recommend reading (Hwang et al., 1988) for the

details. Now in the two-state model, one can write

e1 �+
i

-

2
v

i

rðri 1 d
i

r=2Þ
2
1 +

j

-

2
v

j

qðqj 1 d
j

q=2Þ
2

� -

2
v

i

RðR1 dR=2Þ2 1
-

2
v

i

QðQ1 dQ=2Þ2

e2 �+
i

-

2
v

i

rðri � d
i

r=2Þ
2
1 +

j

-

2
v

j

qðqj � d
j

q=2Þ
2
1DV0

� -

2
v

i

RðR� dR=2Þ2 1
-

2
v

i

QðQ� dQ=2Þ2 1DV0; (12)

where the r and q are the actual ‘‘normal’’ coordinates of the solute and

solvent molecules, whereas R and Q are the effective dimensionless

coordinates for the solute and solvent, respectively. The effective fre-

quencies vQ and vR are evaluated by v ¼
R
vPðvÞdv in which P(v) is

the normalized power spectrum of the corresponding contribution to (e2� e1).

The R are related to the regular solute reaction coordinate R# ¼ (b1 � b2) by

R ¼ R#(vRmR/-)
1/2, where mR is the reduced mass for the normal mode that

is the compression of b1 and extension of b2. The reaction coordinate Q is

defined in terms of the electrostatic contribution (e2 � e1)el to (e2 � e1).

Thus, we have Q ¼ �(e2 � e1)el/-vQdQ), which is also related to the

dimensional solvent reaction coordinate, Q#, by Q ¼ Q#(vQmQ/-)
1/2. DV0 is

the difference between the minima of e2 and e1. Here we replace the

contribution from each set of coordinates by one effective coordinate. The

displacements (the ds) are related to the reorganization energy, l, given by

l ¼ lR 1 lQ ¼+
i

ð-=2Þvi

rðd
i

rÞ
2
1 +

j

ð-=2Þvj

qðd
j

qÞ
2

�ð-=2ÞvRd
2

R 1 ð-=2ÞvQd
2

Q; (13)

An equivalent and more familiar definition of the solvent coordinate (see

also Eq. 12) can be obtained in terms of the macroscopic reaction field (jR) at

the solute cavity, i.e., taking Q to be proportional to jR we obtain

ðe2 � e1Þel ¼ ðm1 � m2ÞjR ¼ CQðm1 � m2Þ; (14)

where m1 and m2 are the dipole moments of the solute for the corresponding

diabatic states, and Q¼ jk/C (here jk is the projection of j on (m1 � m2)). In

the simple two state case we can obtain a convenient description of the

dependence of the ground-state potential (Hwang et al., 1988) on the solvent

coordinate using:

VðQÞ[ ð-=2ÞvQQ
2 � ð2lQ=dQÞðm=mmaxÞ; (15)

where m is the adiabatic dipole moment of the solute. The derivatives of the

ground-state potential with respect to R and Q gives a pair of coupled LD

equations for the solute and solvent systems (see Hwang et al., 1988). Here

we would like to adopt the above treatment, but we have to extend it to

a multistate model that describes a chain of water molecules. This is done by

writing

e�i¼ e
0

i 1D
ðiÞ
1 ð-vQ=2Þ½ðQi;kðiÞ1dÞ2 1 ðQi;k#ðiÞ �dÞ2�; (16)

where ei
0 is defined in Eq. 9 and where we assign two solvent coordinates to

each state that corresponds to a proton inside the chain. In this way we have

one coordinate (Qi,k(i)) assigned to the i-th oxygen (which is protonated in

state i) and to the subsequent oxygen, while assigning a second coordinate

(Qi,k#(i)) to the i-th oxygen and the oxygen before it. When i is the first

oxygen, we do not have a Qi,k#(i). In the case of only one pair of oxygens

(onlyQi,k(i)), we have the same treatment as in Eqs. 12 and 15, except that we

use d instead of d/2, for reasons that will be clarified below. Now when we

consider the total energy of the system we can write

Etot¼ �EEg1+
i

ð-vQ=2ÞðQ2

i;kðiÞ;1BQi;kðiÞQi;k#ðiÞÞ: (17)

�EEg is the lowest eigenvalue of Eq. 5, and the B term expresses the

coupling between the solvent coordinates. Here �EEg reflects the effect of the

eis of Eq. 16, and the other terms in the equation reflect the cost in solvent-

solvent energy associated with moving the solvent coordinates from their

equilibrium position. This treatment is slightly different than the one used by

(Hwang et al., 1988), because in that treatment the solvent-solvent repulsion

was already incorporated in the d values. As a result, this d is given by
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d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4lQÞ=ð-vQÞ

p
. Note that this relationship is different (by O2) than the

standard relationship, due to the presence of the solvent term in Eq. 17.

Substituting Eq. 16 in Eq. 5 we obtain

Etot¼Ci

gH̄
0
Cg1+

i

-vQ

�
2

� ��
ðCi

gÞ
2

Qi;kðiÞ1
d

2

� �2
 

1 Qi;k#ðiÞ �
d

2

� �2
!
1+

i

ðQ2

i;kðiÞ1BQi;kðiÞQi;k#ðiÞÞ
�
;

(18)

where H̄0
is the solute Hamiltonian (with (e0i 1DðiÞ) as diagonal elements and

the gas phase H̄ij as off-diagonal elements) and Cg is the ground state

eigenvector of the simplified EVB Hamiltonian (with the diagonal elements

of Eq. 16). The corresponding LD equation for the solvent coordinate is now

expressed as

mQQ̈#i;kðiÞ ¼�mQgQ
_QQi;kðiÞ �mQv

2

Q

�
ðCi

gÞ
2

Q#i;kðiÞ 1
d#

2

� �

1ðCkðiÞ
g Þ2 Q#kðiÞ;i �

d#

2

� �
1Qi;kðiÞ

1
B

2
ðQk#ðiÞ;i1QkðiÞ;kðiÞ11Þ

�
1AiðtÞ; (19)

where Q ¼ ðmQvQ=-Þ1=2Q#, d ¼ ðmQvQ=-Þ1=2d#, whereas gQ and mQ are

the effective friction and effective mass of the solvent. Here we replace the

coupling between the solute dipole and the solvent reaction field (the

ðm=mmaxÞQ term of Eq. 15) by the alternative ðCi
gÞ

2
expression, which is

exact in the two-state case. Now, ðCi
gÞ

2
determines the amount of positive

charge on the i-th site, and also plays the role of ðm=mmaxÞ. In the multistate

case we introduce a significant approximation and consider independently

the coupling of the solvent to each charge.

The parameter vQ in Eq. 16 can be obtained from the power spectrum of

the solvent fluctuations (see Hwang et al., 1988) and d is obtained from the

electrostatic contribution to the solvent reorganization energy, lQ. The

friction coefficient, gQ, can be obtained (see Hwang et al., 1988) from the

relationship gQ ¼ v2
QtQ, where

tQ¼
Z N

0

ðÆQð0ÞQðtÞæ=ÆQð0ÞQð0ÞæÞdt: (20)

In this work we considered two models; model S/A (where S designates

simplified) only includes the solute coordinate (Eq. 11), whereas S/B

considers the solute and solvent coordinate (Eqs. 11 and 19) simultaneously.

Both models should reproduce the main dynamical and energetic features of

the PTR process. Here we note that the dynamics of the PT processes are

controlled by the fluctuation of the energy gap (Hwang et al., 1988; Warshel,

1984;Warshel and Parson, 2001). Thus we require that the autocorrelation of

the energy gap for the active and complete systems will be similar. Thus, we

required that

ÆDeð0ÞDeðtÞæeff ¼ ÆDeð0ÞDeðtÞæcomplete: (21)

We also required that the effective dynamics of the proton transport

process will be similar (similar residence time) in both the simplified and full

models. For model S/A we obtained the best fit using gH ¼ 20 ps�1 and

m�
H ¼ 10 a.u. The performance in terms of satisfying Eq. 21 is described in

Fig. 2, whereas other aspects are considered in ‘‘Simulating representative

models’’. The use of a large m� for H reflects the fact that this model tries to

account simultaneously for the missing solvent fluctuations by the effective

dynamics of the solute. In looking for the optimal parameters for model

S/B we started by fixing the solute and considering only the solvent coordinate

for both the simplified and full model. This gave gQ ¼ v2
QtQ ¼ 280 ps�1,

with vQ ¼ 37 ps�1 obtained from the power spectrum of the electrostatic

energy gap of the full model for the solvated H3O
1 H2O system (see

discussion in Hwang et al., 1988), and tQ ¼ 0:2 ps obtained from the

autocorrelation of the solvent contribution to the energy gap (Hwang et al.,

1988). The fitting of both models also gave us a solvent reorganization

energy, lQ; of 30 kcal/mol. The solvent effective mass was estimated by

using the relationship m�
Q ¼ kBT=Æð _QQ#Þ2æ that gave m�

Q ¼ 20 a:u:. The

values of gH and m�
H were then obtained by trying to satisfy Eq. 14 for both

the total energy gap, where both the solute and solvent are free to move, and

also by requiring that the time dependence of the proton transport (see

below) will be similar in both models. A reasonable fit was obtained with

gH ¼ 30 ps�1 and m�
H ¼ 10 a:u: (see Fig. 2). Furthermore, we obtained an

excellent fit between the lQ of the full model and model S/B.

In general, one could have tried to obtain different friction coefficients for

different atoms. However, we obtained similar results while changing the

g values of the heavy atoms, and the next important improvement is the

inclusion of the solvent coordinates. Another important issue is the friction

used for the protein simulations. Here we used the same friction as in the

water simulations, because the autocorrelation of the energy gap in the

protein and in solution were found to be similar.

We would like to emphasize at this point that the exact value of the

optimal dynamical parameters is not so crucial here because different

parameters allow us to satisfy Eq. 21. More importantly, our main aim is to

see if models that reproduce the approximated trend of the dynamics of the

full model can be used to explore the dependence of the PTR rate on the

free energy of the central proton. If we can establish a Boltzmann type

dependence of the PTR rate on the electrostatic free energy of the

transferred proton (with a reasonable range of parameters for the simplified

model), and if we can capture such a trend with the full model (in the time

range available for this model) we can gain some confidence in the validity

of the electrostatic model. On the other hand, if we find ‘‘conduction

band’’-like PTR processes even with the large electrostatic barrier, then the

orientational model is valid. It is also useful to note that it is harder to fit

simultaneously the free energy surfaces and the dynamics of model S/A and

the full model, than to do so with model S/B and the full model. Here the

obvious difference is the fact that model S/B provides a much more realistic

description of the solvent coordinate than model S/A. Nevertheless, having

two different models allows us to be more certain about the validity of our

conclusion.

FIGURE 2 Comparing the autocorrelation of the energy gap for the full

model for H5O
1
2 in water (black line) and the corresponding underdamped

models. The simulations were done using g ¼ 30 ps�1 and g ¼ 25 ps�1 for

S/A (gray line) and S/B (gray line with n), respectively.
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The simulations that used the above parameters and the LD equations

(Eqs. 11 and 19) were found to be too slow to allow us to obtain the relevant

proton current in cases with high activation barriers. In such cases it might be

advantageous to treat the system in the overdamped limit at the expense of

having a large transmission factor. Thus we decided to use the overdamped

LD approach (Schuss, 1980; van Gunsteren et al., 1981) of model S/A in

studies of cases with high activation barriers. Now we obtained the optimal

behavior (in terms of stability of the simulations) using m�
H ¼ 10 a:u:;

gH ¼ 900 ps�1. For model S/B, we found the underdamped model to be

sufficiently effective. In this case we took into account the incorrect

‘‘dynamical’’ effects by using the relationship

ka/bðg;m�Þ¼SðDg 6¼Þka/bðg#;m#Þ: (22)

The scaling factor, S, reflects the change in transmission factor upon

change from the underdamped to overdamped model (with the specific gH
and m�

H). The dependence of this factor on the activation barrier for the

transfer process was evaluated using a model of six water (a, b, c, d, e, f )

molecules where the pKa of the two central molecules is being changed

artificially to establish the desired activation barrier, Dgz. The ratio between

the transmission factor of the two models was then determined, according to

the prescription of Hwang et al. (1988), by running downhill trajectories

(starting with a proton at the center of the system) and evaluating the average

time of relaxing to H2Ob or H2Oe. This procedure gave S � 16 for Dgz � 0,

and S � 7 for Dgz . 4. This means that for the challenging high barrier case

the overdamped and underdamped models gave similar rate constants, but

the overdamped model requires less integration steps.

To examine actual PTR in proteins, we considered the K64H-F198D

mutant ofCA III as amodel system (see Schutz andWarshel, 2004; Silverman

et al., 1993; Silverman, 2000 for a discussion of this system). The starting

configuration was taken from the x-ray structure of S-glutathiolated carbonic

anhydrase III (ProteinDataBank identification code 1FLJ;Mallis et al., 2000)

that was then ‘‘mutated’’ to the K64H-F198D mutant and relaxed in a long

relaxation run (100 ps) while being subjected to distance constraints of 9 Å

between the Zn12 ion and the Ne nitrogen of His-64. This generated an ‘‘in’’

conformer for the histidine with a shorter chain of water molecules between

the Zn12 ion and the histidine, and thus simplified the simulation and

discussion. To construct the active space (the part included explicitly in the

simplified models) we started by our regular procedure of embedding the

protein in water and running a relaxation run (Lee et al., 1993). Next, we

located all internal water molecules that can be involved in the PTR process

and the protein groups that can participate in this process. Next we examined

two options. In the first one, we kept all the internal water molecules and

evaluated pKa values of their protonated formby the PDLD/S-LRAapproach.

We then looked for the shortest network between the molecules with the

highest pKa (H3O
1). These molecules were then used as the active space of

the simplified model with a Cartesian position restraint

(V#rest ¼ ð1=2ÞKðri � r+i Þ
2
) with K ¼ 10 kcal�mol�1�Å�2. We also added

a distance restraint of the form V$rest ¼ ð1=2ÞKðbij � b+ij Þ
2
with K ¼ 4

kcal�mol�1�Å�2 between the oxygens of nearby water molecules. In the

second procedure we kept in the active space all internal water molecules that

were a reasonable distance from each other, and then again, used theCartesian

restraintV# uponmoving to the simplifiedmodel. It was eventually concluded

that the first model is sufficiently reliable for this set of calculations. The LD

simulations were done with our MOLARIS simulation program (Chu et al.,

2004; Lee et al., 1993), considering the given chain of donor and acceptors.

The optimal time steps were 20 fs and 1 fs for the overdamped and

underdamped models, respectively. All the PDLD/S-LRA calculations,

including theMDsimulation needed to generate the protein configurations for

the LRA calculations, were performed using the MOLARIS package.

Similarly, we used MOLARIS to perform the EVB calculations with the

complete model. The EVB parameters for the full model were taken from our

previous EVB studies of the autodissociation of water in water (Štrajbl et al.,

2002) with minor modifications (see Table 1). The EVB parameters of the

simplified models were similar to those of the full model, and the main

changes (see Table 1) were: i), the reduction ofD in theMorse potential of the

O-H stretch (thiswas done to reduce the solute reorganization energy inmodel

S/A so that the total reorganization energy would be similar to that of the full

model, which includes the solvent.We also used, for convenience, the sameD
in model S/B, although here we could use higherD and differentH12. ii), The

charges of the simplified model were reduced because this model does not

include explicitly the screening effect of the surrounding environment.

It should be noted that the above approach for calculations of the effective

free energy can be augmented by considering an approximated expression

for the ground-state free energy, D�gg, and the activation free energy for PT

steps, Dg6¼. For example, with a simple two-state model (Fig. 1) we can

obtain a very useful approximation to the D�gg curve. That is, using the above-

mentioned free energy perturbation/umbrella sampling formulation we

obtain the Dg that corresponds to the Eg and the free energy functions (the

Dgi) that correspond to the ei surfaces. This leads to the approximated

expression

DgðxÞ¼1

2

�
ðDg1ðxÞ1Dg2ðxÞÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDg1ðxÞ�Dg2ðxÞÞ214H12ðxÞ

q �
; (23)

TABLE 1 EVB parameters used in different models

Full model* Model S/A Model S/B

Bond parametersy D b0 b D b0 b D b0 b

OW-HW 120.0 0.988 2.0 50.0 0.988 2.0 50.0 0.988 2.0

OH-HH 80.0 0.988 2.2 50.0 0.988 2.0 50.0 0.988 2.0

EVB atomz Charges Charges Charges

OW – �0.80 – – �0.40 – – �0.40 –

OH – �0.65 – – �0.40 – – �0.40 –

HW – 0.40 – – 0.20 – – 0.20 –

HH – 0.55 – – 0.20 – – 0.20 –

Off-diagonal Hijs A a# b# g# u#0 A a# b# g# u#0 A a# b# g# u#0

H2O� � �H3O
1 260.0 0.9 0.0 0.0 0.0 200.0 0.9 0.0 0.0 0.0 200.0 0.9 0.0 0.0 0.0

*Only parameters that are different than those used in Strajbl et al., 2002 are listed.
yOW-HW denotes a bond present in the neutral water molecules, OH-HH denotes the bonds in the hydronium ion.
zThe W subscript indicates it is an atom type in water, the H subscript denotes it is an atom type in hydronium.
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where x is the generalized reaction coordinate, which is given by e2 � e1.

Now we can exploit the fact that the Dgi curves can be approximated by

parabolas of equal curvatures (this linear response relationship was found to

be valid by many microscopic simulations (e.g., Åqvist and Warshel, 1993)

and write

DgiðxÞ¼l
x�x

ðiÞ
o

xðjÞo �xðiÞo

 !2

DgjðxÞ¼l
x�x

ðjÞ
o

x
ðiÞ
o �x

ðjÞ
o

 !2

1DG
0

i/j; (24)

where the reorganization energy, l, (which is illustrated in Fig. 1) includes

now both the solute and solvent contributions. Using Eqs. 23 and 24, one

obtains our modified Marcus relationship (Åqvist and Warshel, 1993;

Hwang et al., 1988; Warshel, 1991)

Dg
6¼
i/j¼ðDG0

i/j1lÞ2=4l�Hijðx 6¼Þ

1H
2

ijðx
ðiÞ
0 Þ=ðDG0

i/j1lÞ; (25)

where DG0
i/j is the free energy of the reaction, and Hij is the off-diagonal

term that mixes the two relevant states whose average value at the transition

state are x 6¼ and x
ðiÞ
0 , respectively. The first term in this expression is the

regular Marcus’ equation (Marcus, 1964), which corresponds to the

intersection of Dg1 and Dg2 at x 6¼. The second and third terms represent,

respectively, the effect of H12 at x
6¼ and x

ðiÞ
o .

It is useful to point out that the same approach used to derive Eqs. 23 and

25 can be used to derive an expression for a concerted path in a three-state

system. This can be easily done numerically by a 3 3 3 EVB equation with

identical reorganization energies and with

DgaðxÞ¼l
x�x

ðaÞ
o

x
ðbÞ
o �x

ðaÞ
o

 !2

1l
y�y

ðaÞ
o

y
ðgÞ
o �y

ðbÞ
o

 !2

DgbðxÞ¼l
x�x

ðbÞ
o

x
ðaÞ
o �x

ðbÞ
o

 !2

1l
y�y

ðbÞ
o

y
ðbÞ
o �y

ðgÞ
o

 !2

1DGa/b

DggðxÞ¼l
x�x

ðgÞ
o

x
ðaÞ
o �x

ðgÞ
o

 !2

1l
y�y

ðgÞ
o

y
ðgÞ
o �y

ðaÞ
o

 !2

1DGa/g; (26)

where the coordinate system is defined in Fig. 3. This type of system will be

discussed at the end of the next section.

SIMULATING REPRESENTATIVE MODELS

Before moving to calculations in proteins it is useful to

establish the validity and performance of our approach in

model systems. Thus we started this study by comparing the

LD of the simplified model and MD of a complete model of

a chain of six EVB water molecules embedded in a classical

water sphere. The calculations were done for two cases, one

with six identical water molecules (a, b, c, d, e, f ) so that the

PTR process involves a very small barrier and the second

case where the gas phase shifts of the third and fourth water

molecules are increased to simulate a decrease in the pKa of

H3O
1 in these positions. The simulated behavior of two such

cases is considered in Figs. 4 and 5. Fig. 4 compares the

calculated time dependence of the coefficients of the EVB

wave function (the ðCa
g Þ

2
) whose values tell us about the

proton position. The time dependence for the ðCa
g Þ

2
of the full

model (Fig. 4 a) corresponds to a picture where the proton

spends 10 ps being delocalized on a specific pair of water

molecules before moving to another (the average residence

time over many trajectories was found to be ;20 ps). This

result is slower by about a factor of 10 from the ;2 ps mean

residence time anticipated from NMR experiments (see

Vuilleumier and Borgis, 1998a,b). However, this is not

a major concern for this work for the following reasons. i), A

related overestimate was reported in an early EVB study and

was attributed to the neglect of nuclear quantum mechanical

(NQM) effects (Vuilleumier and Borgis, 1998b). Obviously,

we could have followed the subsequent study of Borgis

(Vuilleumier and Borgis, 1999) and improved the residence

time of the model, but this would not have changed

substantially any of the conclusions of this article. ii), This

model considers a transfer along one direction in a three-

dimensional water system. The rate of transfer in the case can

be somewhat different than that obtained when the proton is

allowed to move in all directions. iii), As noted above, the

physics of our full EVB model is identical to that of the so-

called MS-EVB model (Schmitt and Voth, 1998; Vuilleum-

ier and Borgis, 1998a,b), and it is not essential to repeat their

calculations. Thus, we only want to make sure that the

parameterization of our full model gives reasonable results.

More specifically, our point is not the validation of the full

FIGURE 3 A two-dimensional representation of the free energy surface

for a concerted PT. The figure considers the EVB results for the

system as a function of the Oa-Ha and Ob-Hb dis-

tances. The spacing of the contour lines is 3 kcal/mol. The figure

demonstrates that the concerted path (a/g) does not provide a lower

barrier than the stepwise path (a/b/g) in the typical case where

DGa/b � 10 kcal and DGb/g � 0 kcal.
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EVB model in bulk water, but the calibration of the

simplified models that would reproduce the main properties

of a reasonable full model. With this in mind, the main point

of Fig. 4 is the similar behavior of the underdamped version

of model S/A and the full model. We also show in Fig. 4 c
that the transfer time of the overdamped version of model

S/A is ;16 times longer than that of the underdamped ver-

sion. Similar behavior was obtained by model S/B.

Next we start to consider our main point, which is the

dependence of the average transfer rate on the electrostatic

free energy of the transferred proton. Here we start with

a case that can be simulated by the full EVB model (DGab ¼
0, DGbc ¼ DGcd ¼ 2, DGde ¼ 0). Now we find that the rate

becomes slower, and that again the average transfer time of

the overdamped model is ;16 times longer than that of the

underdamped model. A more general comparison was done

by a systematic variation of the gas phase shifts of states c

and d (or the corresponding pKa values of the H3O
1
c and

H3O
1
d ) evaluation of the resulting DGb/d and Dg

z
b/e by our

EVB/US procedure and then calculations of the actual

transfer time, tb/e for the full model and for models S/A and

S/B. The results of this study are summarized in Fig. 6. As

seen from the figure, once Dgz is larger than 4 kcal/mol, the

dependence of t�1 on Dgz follows the trend predicted by

transition state theory. That is, assuming that the frictional

effects are independent of Dgzb/e; we can write

FIGURE 5 Comparison of the time dependence of the probability

amplitudes of the transferred proton for the (H2Oa, H3O
1
b ; H2Oc, H2Od,

H2Oe, H2Of) model system, with DGbc ¼ DGed ¼ 2 kcal/mol, using the full

model (a), the simplified model (S/A) in the underdamped limit (b) and the

overdamped limit (c). The coordinates are the same as those described in

Fig. 4.

FIGURE 4 Comparing the time dependence of the probabilities of the

different EVB states, (the ðCðiÞ
g Þ2) of the (H2Oa, H3O

1
b ; H2Oc, H2Od, H2Oe,

H2Of) model system (where DGab ¼ 0 kcal/mol for all PT steps) using the

full model (a), the simplified model (S/A) in the underdamped (b) and

overdamped limits (c). When a proton is localized on a given site, the

corresponding ðCðiÞ
g Þ2 is unity.
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t
�1

b/eðDg
6¼
b/eÞ=t

�1

b/eðDg
6¼
b/e ¼ 4Þ

� expf�DDg
6¼
b/e=RTg � expf�DDGb/d=RTg (27)

where we used the fact that DDg 6¼b/e � DDGb/d.

The above results were obtained for cases where the

barrier for transfer between two water molecules involves

two intervening water molecules. Another interesting case

involves only one intervening water molecule. This case is

less sensitive to the decrease of the pKa of the central H3O
1

because of the fact that the concerted path helps to overcome

the barrier of the stepwise path. This problem does not occur,

however, with two intervening water molecules (see dis-

cussion in ‘‘Concluding remarks’’).

Finally, we would also like to point out that we obtained

the same trend in longer chains of explicit water molecules,

including a chain of 12 molecules, which corresponds to the

length of the water channel in gramicidin A.

SIMULATIONS OF PTR IN CA III

After verifying the performance of our approach in simple

representative cases, we considered the PTR in CA III, which

is our main benchmark. The groups that were considered in

the active space are shown in Fig. 7. Of course, we could

have considered explicitly more protein groups but this

would not have changed our verification study (see below).

The first step of our simulation has been the evaluation of

the free energies of protonation of the different protonation

sites of the K64H-F198D mutant. The free energy for PT

from the zinc-bound water to the next water molecule was

evaluated previously (Åqvist and Warshel, 1992) by EVB

calculations (because it requires a special treatment of the

Zn12 ion). The free energies for all the subsequent steps were

obtained by the PDLD/S-LRA approach. The corresponding

results are given in dark lines in Fig. 8. We chose this mutant

because it involves a relatively low barrier for PTR from site

d to site a. Using these free energies we constructed the

overall free energy profile for the simplified model using

the standard EVB/US procedure (Warshel, 1991), but with

the underdamped version of model S/A. In this procedure,

we adjusted the gas phase shifts (the D(i) values) to force the

simulated DGij to reproduce the corresponding PDLD/S-

LRA results (this corresponds to the use of Eqs. 8a and 10).

The corresponding profile is also shown in Fig. 8. We also

converted the PDLD/S-LRA results to the corresponding ac-

tivation barriers for the PTR process using Eq. 25 with lij ¼
80 kcal/mol, and Hij ¼ 20 kcal/mol, as was done recently

(Schutz and Warshel, 2004). This led to results that were

almost identical to those presented in Fig. 8. Similar results

were also obtained by the EVB/US treatment of the complete

model (not shown).

FIGURE 7 The active space groups in the K64H-F198Dmutant of CA III.

FIGURE 8 Converting the PDLD/S-LRA results to an approximated

EVB profile. The PDLD/S-LRA free energies of protonating each site (at

pH ¼ 7) are designated by bars, and the profiles for PT between different

sites are designated by dashed lines. These profiles were evaluated by the

EVB/umbrella sampling approach using the overdamped version of model

(S/A). Similar results were obtained with the underdamped model.

FIGURE 6 Examining the relationship between the average time (in s) of

transfer from b to e for different DG0 values (DGbc ¼ DGed ¼ DG0). The

figure describes the results of the full model and models S/A and S/B. The

line with diamonds corresponds to the underdamped version of model S/A,

squares to the overdamped version of model S/A, circles to the full model,

and stars to the underdamped version of model S/B. The dashed line

designates the trend predicted by transition state theory.
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Combining the above analysis and the conclusions from

Fig. 6 indicates that the overall PTR is determined by the

highest barrier and the corresponding DGij values. However,

it is still crucial to establish that the frictional effects do not

change the overall picture, and that our approach is capable

of handling complex multisite kinetics. It is also crucial to

establish that a proper multistate EVB treatment gives the

same trend obtained by the modified Marcus’ treatment. To

establish these points, we used the simplified EVB and

explored the PTR dynamics of the K64H-F198D mutant of

CA III. In doing so, we explored first a PTR from His-64 to

the zinc-bound OH�. The rate of this process should

correspond to the kB of Silverman et al. (1993). Because

direct simulations took too long even with the overdamped

model (about two weeks on an IBM Pentium III 1.13 GHz

processor (Armonk, NY)) we pushed up the minimum at site

d (His-64) by 1.2 kcal/mol, and obtained trajectories of

the type presented in Fig. 9. This gave an average transfer

time of

td/aðDDGd ¼ 1:2 kcal=molÞ � 5 3 10
�8

s: (28)

Correcting td/a for the free energy shift (a factor of ;7)

and for the S factor of Eq. 22 (a factor of ;7) gives now

td/a � 73 10�7 s. This result is obtained assuming that the

S factor in Eq. 22 is unity for large DG, and this assumption

is probably not perfect. Thus, we consider the present result

to be in a reasonable agreement with the time obtained from

the experimentally observed kB of our mutant (td/a ¼
k�1
B ¼ 303 10�7 s). To explore the effect of PTR from the

bulk solvent, we also propagated trajectories from site f,

which is close to the bulk solvent. Some trajectories

bypassed the ‘‘trap’’ of His-64 and arrived at ;10�9 s to

site a (e.g., Fig. 10, which should be corrected to ;10�8 s,

considering the factor S of Eq. 22). Others were trapped by

His-64, where it took;10�5 s to reach site a. Comparing the

kinetic implications of these results to the corresponding

observed pH profile is out of the scope of this work (it might

also require averaging on different configurations of His-64).

However, we note that the 10�9 s arrival time should be

combined with the arrival time of a bulk proton, which is

;2 3 10�5 s at pH ¼ 7 (see Sham et al., 1999). At any rate,

these results are very encouraging because they were

obtained without adjusting any parameters in the protein

calculations.

Although this simulation did not explore in a systematic

way the observed effect of the different CA III mutants

studied by Silverman (Silverman et al., 1993), it examined

them in an indirect way. That is, our simulation of the rate

of PTR from site d to site a shows a Boltzmann-type

dependence on DGd/a (the same type of dependence

obtained in Fig. 6). Nowwe already have shown in a previous

study that used the modified Marcus’ treatment (Schutz and

Warshel, 2004) that such a dependence reproduced the

change of rate constants in the different mutants of CA III.

It may be useful to ask whether our simplified model

captures the dynamical aspects of the full model of CA III.

Obviously we cannot use a direct MD simulation and the full

EVB model to explore the uphill PTR in CA, because this

process involves activation barriers of .10 kcal/mol.

However, we can still compare the performance of the full

and simplified models in steps that involve small barriers.

This was done by comparing the transfer from H3O
1
f to His-

64 in both models. As seen from Figs. 11 and 12, we ob-

tained a similar transfer time in both cases.

Before concluding this section, it might be useful to make

a general comment about the energetics of concerted and

nonconcerted PTR. The most important point in this respect

is the finding that the stepwise and concerted mechanisms

tend to follow a similar trend in endothermic processes

(Štrajbl et al., 2002; Warshel andWeiss, 1980; Warshel et al.,

1988). To see this point it is useful to consider Fig. 3 when

DGa/b � 0 and DGb/g ffi 0. In this case we can exploit

the fact that ðDgzi/jÞ ffi DGi/j (when the proton donor and

acceptor are at a close distance). With this we obtain

FIGURE 10 The time dependence of the probability amplitude of the

transferred proton for an LD trajectory for a PTR that starts at H2Of and ends

at OH� in the overdamped version of model S/A of the K64H-F198D

mutant of CA III.

FIGURE 9 The time dependence of the probability amplitude of the

transferred proton for an LD trajectory for a PTR that starts at His-64 and

ends at OH� in the overdamped version of model S/A of the K64H-F198D

mutant of CA III. The calculations were accelerated by considering a case

where the minimum at site d is raised by 1.2 kcal/mol.
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Dg
6¼
concerted $DGa/g ffi DGa/b 1DGb/g

Dg
6¼
stepwise ffi DGa/b 1DGb/g: (29)

Thus the trend (and the dependence on DGa/b) is similar

in both cases. Of course, when DGa/b is much larger than

DGa/g, the concerted path becomes more important, but

this effect is taken into account in our considerations.

ASSESSING THE APPROXIMATIONS USED

In this work, as in any other simulation study, there are

obviously some approximations. In assessing the validity and

nature of these approximations we have to examine what we

are trying to accomplish. That is, this work’s starting point is

that the full EVBmodel is a valid approach for reliable studies

of PT in proteins. This view is based on the fact that the EVB

is now used by many research groups (see Warshel and

Florian, 2004 for a partial list) and is known to give accurate

results in cases where the energetics of the PT process are

known experimentally (e.g., Åqvist and Warshel, 1993). One

may still wonder about the approximations in the full EVB

method, but here the use of a semiempirical model in studies

of proteins is as approximated as any of the current popular

force-field methods, and does not need a special discussion.

In fact the problem is frequently the convergence of the

calculations and not the specific parameters (see Shurki and

Warshel, 2003). With this in mind the next question is what

are the approximations in the simplifiedmodel. Here it should

be realized that the simplified model is only used as a tool for

generating an EVB model that retains the physics of the full

EVB model but does not include the solvent explicitly.

Obviously this is an approximation, which is common to all

implicit models, and it should be judged by the performance

and by the physical constraints used. Now the approxima-

tions used for capturing the dynamics of the solvent, e.g., the

friction and reduced mass are very reasonable, and at least in

model S/B are very physical. Here the most important

requirement is that the model will reproduce reasonable

dynamics as judged by the autocorrelation of the energy gap

(this autocorrelation has been shown to determine the

dynamics of PTR processes (e.g., Warshel and Parson,

2001) and the average jump time, which is closely related to

the diffusion time (Vuilleumier and Borgis, 1998b)). There

are several sets of parameters that can give reasonable results

and because the main issue is not the exact dynamics but the

dependence on the energetics we feel that the parameters

chosen are reasonable. Furthermore, by obtaining the same

dependence on the energetics by two very different simplified

models we believe that the approximations used to represent

the effect of the environment of the solute dynamics are

reasonable. Now let us move to the main issue, which is the

dependence on the electrostatic energy of the transferred

proton. Here we force the simplified EVB to be reliable by

forcing the diagonal free energies to reproduce the free

energy functionals of the full model (Eq. 8 and the discussion

in Methods). Because it is very easy to satisfy Eq. 8, the

reliability is judged by the reliability of the electrostatic free

energy of the full system. Here we obtain a reasonable

accuracy by using the PDLD/S-LRAmodel, whose reliability

has been established by many studies, e.g., Schutz and

Warshel (2001). In summary of this section, we do not feel

that the approximations used here are particularly serious and

it seems to us that this model is as reliable as the full model in

terms of the dependence of the rate on the energetics, except

that the simplified model allows us to examine processes that

occur over a long time range. Furthermore, we can also

double-check our approximation by comparing its results to

those of the full model in processes that occur fast enough.

Finally, as with any other approximated model, the only way

to judge the reliability is to examine cases where the

experimental result is known and to do this without adjustable

parameters. On this count we are doing quite well.

CONCLUDING REMARKS

This work examined general aspects of PTR in proteins by

considering such processes in CA III. To be able to perform

FIGURE 12 Showing the time dependence of the probability amplitudes

of the transferred proton for a PTR trajectory of the underdamped version of

model S/A where the proton moves from H3O
1
f to His-64 in the K64H-

F198D mutant of CA III.

FIGURE 11 Showing the time dependence of the probability amplitudes

of the transferred proton for a PTR trajectory of the complete model where

the proton moves from H3O
1
f to His-64 in the K64H-F198D mutant of

CA III.
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simulations in a reasonable computer time in CA III, or in

other systems with high activation barriers, we had to develop

a simplified version of the EVB model. This was done by

considering the given conduction chain as an ‘‘active space’’,

which is represented by an explicit EVB Hamiltonian, while

accounting for the effect of the surroundings implicitly by

changing the effective gas phase shift (the �DD(i) of Eq. 6) and

some of the solute force constants. The dynamical effects of

the surrounding environment were modeled by using LD

simulations. More specifically, the diagonal elements of the

simplified model include a shift that forced the corresponding

Marcus’ parabolas to have the sameminima as those of the full

model. Similarly, the model was forced to reproduce the

reorganization free energies and activation barriers of the full

model by either adjusting the solute force constant (model

S/A) or by adding effective solvent coordinates (model S/B).

The dynamical properties of the simplified models were

forced to approximate those of the full model by adjusting the

effective friction so that the autocorrelation of the energy gap

of the simplified models will be similar to that of the full

model. The simplified models were then used in LD simu-

lations of PTR processes, accounting in a physically consis-

tent way for the delocalization of the proton charge and for

possible concerted pathways. The validity of the simplified

models was demonstrated first by comparing the correspond-

ing simulations of PTR in a simple test case to those obtained

in a fully microscopic EVB model. The simplified models,

and in particular model S/A, were then used to simulate the

PTR in CA III where it reproduced the observed rate constant

without adjusting any parameters to obtain this result.

The establishment of the validity of our simplified model

allows us to validate an even simpler EVB-based model,

where the activation barriers for each PT step are evaluated

by a modified Marcus formula. The relationship between this

model and the simplified EVB model are demonstrated and

clarified. This includes the issue of concerted pathways that

will be further discussed below. It may also be useful to

clarify that the recently developed Q-HOP model (de Groot

et al., 2003; Lill and Helms, 2001) is related to our EVB-

based model but without the well-defined physical origin.

That is, the Q-HOP model followed the philosophy of our

previous work (Sham et al., 1999) and tried to extend it to

MD simulation of PTR in proteins. This was done by

developing an empirical approximation to our Eq. 25 (see

discussion in Lill and Helms, 2001 of their Eq. 3) but without

the EVB basic formulation. In this way, it is hard to treat

correctly delocalization effects and/or extend the model in

a consistent way to concerted pathways. At any rate, both the

simplified EVB and the modified Marcus’ formulations can

be applied to PTR in proteins, but the simplified EVB

provides a more rigorous way to explore dynamical and

frictional effects (that are nevertheless, less important than

the energetics of the system).

The reliability of this study and other studies of PTR in

proteins depend strongly on the reliability of the calculated

energetics of the proton in the different protonation sites. Here

we believe that the combination of the FEP/US calculations of

the a/b step and the PDLD/S-LRA calculations of the other

steps provide one of the most reliable options. Asmuch as CA

is concerned, we would like to point out that at present, only

EVB studies (e.g., Åqvist and Warshel, 1992) provide

a reasonable estimate of the observed kcat. In this respect, it

is instructive to clarify some possible misunderstandings due

to the finding of recent gas phase ab initio calculations (e.g.,

Cui and Karplus, 2003; Isaev and Scheiner, 2001; Lu and

Voth, 1998). For example, Cui and Karplus (2003) evaluated

by ab initio density functional theory (DFT) calculations of

the energy profile for PT between the Zn-bound water to

His-64 in a gas phase model system with different numbers

of bridging water molecules (two, three, and four bridging

molecules). It was found that the gas phase energy profile

changes drastically (from 0.6 to 6 kcal/mol) depending on the

number of bridging water molecules (the point here is the

changewith the number ofwatermolecules, and not the actual

barrier). However, our PDLD/S-LRA and FEP simulation

studies indicated that the above findings probably reflect an

artifact of the use of gas phase calculations. Basically, the

dielectric effect of the protein environment is a key factor. For

example, the energy of the PT from a/b is critically

dependent on the screening of the effect of the Zn12 ion on the

OH� (Åqvist and Warshel, 1992) and cannot be estimated

correctly without taking into account the effect of the

environment. The EVB gives a barrier of ;10 kcal/mol for

the a/b step and for the concerted a/c path (note that the

value for a/b is taken from the accurate calculation of

Åqvist and Warshel, 1992). This result is in a complete

agreement with the corresponding experimental results. It is

also useful to note that in contrast to frequent implications in

the literature, (where it is implied that the isotope effect in CA

is inconsistent with stepwise PTR) the observed isotope effect

has been reproduced by the NQM centroid calculations of

Hwang andWarshel (1996) (see also discussion in Schutz and

Warshel, 2004). The full information content of the

experimental isotope effect studies can only be extracted by

performing NQM simulations for alternative pathways and

different numbers of bridging water molecules. We are not

aware of any such study, and it is not clear if such a study

would provide unique conclusions. Finally, it might also be

useful to comment on studies that reported gas phase ab initio

calculations of the reaction of CA (Lu and Voth, 1998). These

calculations assumed that the success of the quantitative 1992

EVB/FEP study of CA is fortuitous. However, EVB cal-

culations are particularly effective in reproducing accurately

the difference between reactions in solutions and proteins (or

the effects of mutations in a given protein). Calibrating the

EVB on the solution reaction does not leave much

opportunity for fortuitous results.

One of the main reasons for the apparent difficulties of

accepting the electrostatic control model has probably been

associated with the concerted nature of PTR in solution. It
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has been assumed by some that the concerted motion can

provide a way to overcome the electrostatic barrier that can

exist for PTR in proteins. It is also possible that it has been

assumed that the modified Marcus’ formulation and perhaps

our EVB model are restricted to a stepwise mechanism and

to a two-state model. In this respect it is important to clarify

that already our first EVB studies (e.g., Warshel and Weiss,

1980; Warshel et al., 1988) explored the concerted pathways

and demonstrated that the energetics of the stepwise and the

concerted paths are correlated in a similar way with the effect

of the environment. This point has been established at the

end of the section entitled ‘‘Simulations of PTR in CA III’’

with the help of Fig. 3, for the case when DGa/b � 0 and

DGb/g � 0. Thus it seems to us that different attempts to

imply that the concerted path is fundamentally different than

the stepwise path are inconclusive at best, unless they

involve a comparison of the energetics of both paths (such

a comparison has been done repeatedly by our group (e.g.,

Strajbl et al., 2000; Warshel and Weiss, 1980). The same is

true with regards to attempts to use isotope effects to prove

the importance of concerted paths (see above). At any rate,

the EVB model can include as many states as needed and can

be used in studies of concerted pathways (although it might

require a more extensive mapping procedure). The simplified

EVB model also allows us to take into account the full

concerted space. Finally, we would like to clarify that we

recognize the fact that PTR in proteins involve a partially

concerted motion of properly oriented hydrogen bonds.

However, the penalty of orienting the hydrogen bonds to the

correct orientation is not large and, furthermore, since the

same type of least energy path exists for different DGs, it is
the magnitude of the DGs that controls the corresponding

rate constants.

This work has established the importance of the

electrostatic energy of the transferred proton (e.g., Fig. 6

and the simulations of CA III). The same conclusions were

obtained for a PTR through long chains of water molecules

in water, which can be viewed as models for PTR through

proton wires in general channels. Similar but more intuitive

arguments have been made in our previous works using the

modified Marcus’ model (e.g., Sham et al., 1999). Neverthe-

less, the appreciation of the overwhelming contribution of

electrostatic effects to PTR has been slow perhaps because of

the picture that emerged from the influential model of Nagle

and co-workers (Nagle and Morowitz, 1978; Nagle and

Mille, 1981). This model, that was adopted implicitly in

computational studies of PTR in gramicidin channels (e.g.,

Pomes and Roux, 1998, 2002), in membranes (e.g., Marrink

et al., 1996), and in some respects, in the early discussion of

aquaporin, divides the PTR process into two steps, a HOP

step where the proton is being transferred and a TURN step

where the water file rearranges its orientation. It was thus

assumed implicitly that the overall barrier for the PTR

process involves the effect of these two processes.

Furthermore, since studies of PTR in membranes (e.g.,

Marrink et al., 1996) and other systems (Pomes and Roux,

1998, 2002) concluded that the TURN step is rate limiting in

the specific systems studied, it was thus implied that the

reorientation of the water file plays a major role in the overall

PTR. This picture sometimes overlooked the solvation effect

(e.g., moving from water to a less polar environment) on the

HOP step and led, perhaps unintentionally, to the assumption

that the reorganizational fluctuations of a single-file water

chain in the absence of the proton in PT models can be used

to estimate the overall barrier for a PTR process (again,

the barrier is defined here as the overall activation barrier).

Thus, it was implied that the free energy of inverting the

directionality of the water file is directly relevant to the

activation free energy of the overall PTR process. For

example, an interesting work (Pomes and Roux, 1998) that

addressed the ‘‘free energy for H1 conductance along

hydrogen-bonded chains of water molecules’’ has concluded

that "the inversion of the total dipole moment (of the

unprotonated water file) involves an activation energy of

;8 kcal/mol, whereas in contrast ‘‘the rapid translocation of

an excess H1 across a chain extending between two

spherical solvent droplets is an activationless process.’’ This

finding was probably brought forth as a study that is relevant

to gramicidin and other channels, and obviously the

conclusion implies that the free energy barrier is mainly

influenced by the water reorientation. The origin of this

misunderstanding might be due to calculations of PTR

without sufficient water molecules on both sides of the

channel, thus obtaining a barrierless PTR step. Related

attempts to consider the actual gramicidin channel (Pomes

and Roux, 2002) were also put forward as a support of the

Nagle proton wire mechanism. However, the calculations

were restricted again to the center of the channel, thus

overlooking the key problem (which is the energy for

moving from bulk water to the channel).

Regardless of the issue of the contribution of the H1

translocation step, it is also important to recognize that the

separation into HOP and TURN steps is problematic. That is,

while separating the two steps may be reasonable in studies

of PTR in water, it does not provide a proper computational

or conceptual prescription when one deals with cases with

significant electrostatic barriers. In such cases the relevant

free energy should have been considered by evaluating the

free energy of the proton on each site and the solvent

reorganization energy (considering the presence of an actual

proton). As was shown in many of our early studies of this

problem (e.g., Åqvist and Warshel, 1993) and in this work,

the correct adiabatic barrier associated with the (large)

solvent reorganization energy is quite small for small

separation between the donor and acceptor (due to the effect

of H12) and thus the key factor is DGij: In other words,

calculations of the free energy profile for overall dipolar

reorientation in the absence of the proton (e.g., Pomes and

Roux, 1998) are not related directly to the energetics of the

PT process and we are not aware of any formulation that

Simulating Proton Transport 2235

Biophysical Journal 87(4) 2221–2239



established such a relationship in a consistent way. On the

other hand, the EVB provides a relatively rigorous frame-

work that relates the protein (or solvent) dipolar reorgani-

zation to the free energy profile for the PT process. This

formulation (e.g., Eqs. 23 and 25) tells us exactly what type

of reorganization energy, li/j; should be considered in any

specific PT step. The assumption that the complete re-

organization of the water file in the absence of the proton is

related directly to the energetics of the PTR process is

somewhat problematic even in the framework of a thermo-

dynamic cycle that would augment the calculations of the

reorientation of the file by evaluating the energy of bringing

the proton to the oriented file. First, the reaction coordinate

for orienting the file does not correspond to the proper

orientation of the file in each step of the PTR. In fact, the PT

process only requires a perfect orientation of a few water

molecules. Thus, for example, the configurations that pro-

mote a PT between two water molecules in the center of the

channel do not require a special orientation of the entire

water file. Instead they are correlated with the maximal

solvation of the reactant and product states (the maximal

solvation does not require a ‘‘head to tail’’ orientation of all

the molecules along the water file). Realizing this point is

particularly important when one proposes that the protein

prevents a perfect orientation of the file, and that this

prevents PTR (e.g., de Groot and Grubmuller, 2001).

Second, any attempt to calculate separately the electrostatic

energy of orienting the water molecules without the proton

and then a separate evaluation of the electrostatic energy of

the proton in the particular site would involve a ‘‘double

counting’’ unless one evaluates correctly the electrostatic

energy of binding the proton to the oriented water file (rather

than to the relaxed solvent structure). As clarified in this

work, with a consistent EVB formulation, a proper calculation

should evaluate the electrostatic free energy of bringing the

proton to a given site. Once this would be done, the free

energy of the PT process will be determined by the

reorganization free energy of both the channel polar groups

and the water file, as well as by Hij. Introducing alternative

inconsistent approaches may lead to an incorrect picture.

In view of the fact that PTR processes in water sometimes

involve transfer between H5O
1
2 clusters it is natural to

wonder how we can deal with such processes while

considering zero-order H3O
1states. The answer is that the

time dependence of the EVB eigenvectors (the Cs of Eq. 5)
describes any form of PTR. If the process involves a transfer

of H5O
1
2 it will be reflected in the corresponding Cs. The

problem in realizing this point might reflect confusion

between the basis set used (the isolated, localized H3O
1 of

Eq. 3) and the actual states obtained from their mixing. Thus

it is important to realize that the EVB considers the entire

system (while incorporating, of course, all the field from the

protein in the diagonal Hamiltonian) and then mixes the

diagonal states. This means that the delocalization is

obtained after the addition of the environment rather than

before. This appears to be a somewhat more rigorous and

physically consistent treatment than molecular orbital QM/

MM. It is also important to realize that the issue of transfer of

delocalized clusters becomes much less important once we

have high barriers for the PTR process. That is, the EVB

Hamiltonian (which provides an excellent description of the

system) stops giving a delocalized picture once the energy of

the isolated states go uphill. Now, on the flat region of the

barrier we again may have delocalized states but their energy

would be determined by the energy of the localized states.

For example, the EVB produces delocalized states on the top

of the barrier of aquaporin but this is irrelevant to the overall

barrier because there is no delocalized state that moves the

proton without a barrier from one side of the channel to

another. The belief that this should be the physics of PTR in

channels and proteins is perhaps the reason why the

electrostatic model was rejected for a long time. At any

rate, it is useful to view the PTR issue by thinking of an EVB

matrix where the diagonal energies reflect the electrostatic

barrier and its fluctuations. With such a model one finds that

once the energies of state i 1 1 and i 1 2 are significantly

higher than that of state i, it will be found that the PTR is

controlled by DGi11. Only when the energies of all states are

similar will we find that the transfer is controlled by the

Grotthuss mechanism.

The use of the simplified EVB model is particularly

effective in cases with high barriers and many protonation

sites. However, after identifying the key pathways we can still

refine the transmission factor along different high-energy

plateaus by more rigorous approaches. For example, it is

possible to use the full EVB model and to run downhill

trajectories from different high-energy points. Comparing the

corresponding paths and transmission factors can tell us if we

have to modify the conclusions from the simplified model.

Our simulations of the PTR in CAIII were accelerated by

raising the minimum at site d by;1.2 kcal/mol to reduce the

computational time. Such a controlled change of the reaction

landscape can be used as a general strategy in more complex

PTR problems. Alternatively, it might be useful to accelerate

the calculations by increasing the simulation temperature.

Some workers considered the time of forming different

water configurations as a key factor in the rate of PTR (e.g.,

Marrink et al., 1996). Although this is unlikely to be a crucial

factor in our system, it might be important in some cases

where the solvent is not present in the transfer path before the

transfer process (this is equivalent to the well-known issue of

the Marcus’ work function). Moreover, a more systematic

study of CA III should have considered several alternative

configurations of the donor at residue 64. Thus it might be

useful to evaluate the free energy of forming different water

configurations and/or different configurations of the residues

that participate in the PT process. Once this is done we can

obtain the overall rate constant by running the simplified

EVB simulations from these configurations and averaging

the results according to the probability of the initial
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configurations. Note, however, that we are not talking here

on minor configurational changes around a given conforma-

tional state, because the PDLD/S-LRA procedure can handle

this effect and provides the free energy of the proton in each

conformational state.

As established in this and previous works (e.g., Schutz and

Warshel, 2004) the key parameter that controls PTR is the

electrostatic energy of the proton on the different bases along

the transfer pathway. Evaluating these energies or the

corresponding pKa values is the key prerequisite for reliable

simulations of PTR in proteins. Thus, one can and should

judge different strategies for simulations of PTR in proteins

by their ability to reproduce reliable pKa values. In this

respect, we view the simplified EVB method as a particularly

promising approach, considering the demonstrated reliability

and consistency of the PDLD/S-LRA treatment. Of course,

one can also use the complete EVB FEP/US approach to

evaluate the proton transfer free energies, but it is not clear

that this can give more reliable pKa values. At any rate, we

believe that this simplified approach offers a general and

extremely effective way for studying PTR in proteins.
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